باسمه تعالى

تعداد صفحه: ۲	ساعت شروع: 10 صبح	رشته : ریاضی و فیزیک	سؤالات امتحان نهایی درس : حسابان ۲
نام و نام خانوادگی :	تاریخ امتحان:۱۳۹۷/۱۰/۰۳	مدت امتحان: ۱۳۰ دقیقه	پایه دوازدهم دورهٔ دوم متوسطه
سنجش آمورش و پرورش http://aee.medu.ir	ا ۱۳۹۷ مرکز	راسرکشور در نوبت دی ماه سال	دانش آموزان بزرگسال و داوطلبان آزاد س

ورس	موران برر دسال و داوطنبان آزاد سراسر دسور در توبت دی ماه سال ۱۱۹۴ موران برر دسال و داوطنبان آزاد سراسر دسور در توبت دی ماه سال ۱۱۹۴ موران و پرز http://aee.medu.ir	٠,٠٠٠
نمره	سؤالات (پاسخ نامه دارد)	ديف
١	جاهای خالی را با عدد یا عبارت مناسب پر کنید.	١
	الف)اگر باقی مانده تقسیم $f(x)=x^{ au}+k$ بر $f(x)=x^{ au}+k$ برابر با ۲ باشد، مقدار k برابراست.	
	ب)دوره تناوب تابع تانژانت برابر بااست.	
	پ) مشتق تابع $f(x)=\sqrt{1}$ در نقطه ای به طول یک روی منحنی تابع، عدد است.	
	ت) اگر تابع $y=f(x)$ در بازه $[a,b]$ صعودی باشد، علامت مشتق تابع f در این بازه است.	
1/4	g نمودار تابع f در شکل زیر رسم شده است. نمودار تابع $g(x)=-f(ext{Y} x)$ را رسم کنید. سپس دامنه و برد تابع	۲
	را تعیین کنید.	
١	هر یک از چند جمله ای های زیر را بر حسب عامل خواسته شده ، تجزیه کنید.	٣
	$x-1$ الف $x^{4}+1$ با عامل $x+1$ با عامل $x+1$	
٠/٧۵	بنمودار تابع $f(x)=(x+1)^{ ext{r}}$ را رسم کنید. این تابع در دامنه خود اکیداً صعودی است یا اکیداً نزولی؟	4
٠/۵	درست یا نادرست بودن جملات زیر را مشخص کنید.	۵
	الف)مینیمم تابع $y=-\pi\cos(\pi x)+\gamma$ برابر با یک است.	
	ب) تابع تانژانت در دامنه اش صعودی است.	
١	ضابطه تابعی به فرم $y=a\sin bx+c$ را بنویسید که دوره تناوب آن π ، مقدار ماکزیمم آن $y=a\sin bx+c$ صابطه.	۶
1/40	معادله مثلثاتی $\cos \pi x - \cos x = 0$ را حل کنید.	٧
1/0	حدود زیر را به دست آورید. $\lim_{x \to \tau^+} \frac{r x + lim}{f - x^r} \qquad \qquad \qquad \lim_{x \to +\infty} \frac{f x^a + r x^r + l}{-r x^a + r x^r + r} $ (الف	٨
1/6	مجانب های قائم و افقی تابع $f(x)=rac{rac{rac{n}{x}}{x^{rac{1}{n}}-1}$ را بیابید.	٩
١	مشتق پذیری تابع $f(x)= x-1 $ را در $x=1$ بررسی کنید.	1.
	« ادامه سوالات در صفحه دوم »	

باسمه تعالى

تعداد صفحه: ۲	C		سؤالات امتحان نهایی درس : حسابان ۲
	تاریخ امتحان:۱۳۹۷/۱۰/۰۳	مدت امتحان: ۱۳۰ دقیقه	
سنجش آموزش و پرورش http://aee.medu.ir	ل ۱۳۹۷ مرکز	راسرکشور در نوبت دی ماه سال	دانش آموزان بزرگسال و داوطلبان آزاد س

	http://aee.medu.ir	۰, حس
ىمرە	سؤالات (پاسح نامه دارد)	ديف
•/٧۵	با در نظر گرفتن نمودار f در شکل، به سوالات زیر پاسخ دهید. الف) طول نقطه ای که مماس در آن افقی است. A	"
1/۲۵	g'(r) و $g'(r) = r$ مقادیر $g'(r) = r$ و $g(r) = -r$, $f'(r) = r$ ، مقادیر $g'(r) = r$ ، مقدد $g'(r) = r$ ، م	۱۲
۲	مشتق توابع زیر را به دست آورید. (ساده کردن مشتق الزامی نیست.) $y = \frac{x^{r} + 1}{x^{r} + 7x - 2}$ (الف $y = \cos^{r}(-xx + 1)$	18
۰/۷۵	یک توده باکتری پس از t ساعت دارای جرم $m(t)=\sqrt{t}+t^ ext{'}$ گرم است. آهنگ رشد جرم توده باکتری در لحظه $t=9$	14
1/4	ضرایب a را در تابع $f(x)=-x^{\mathfrak{r}}+ax+b$ طوری تعیین کنید که در نقطه $(\mathfrak{r},\mathfrak{r})$ ماکزیمم نسبی داشته باشد.	10
١	جهت تقعر و نقطه عطف نمودار تابع $f(x)=-x^{r}+x^{r}+1$ را به دست آورید.	18
/۷۵	جدول رفتار و نمودار تابع $f(x) = \frac{x+1}{x-1}$ را رسم کنید.	17
7.	موفق و سربلند باشید. جمع نمره	

			باسمه تعالى			4
بقه	مدات امتحان: ۱۳۰ دقی 	باعث شروع: ۱۰ صبح	يزيک س	رشته: ریاضی و ف	، تصحیح امتحان نهایی درس: حسابان ۲	راهنماي
	144/1-/-4:	تاريخ امتحان		توسطه	پایه دوازدهم دورهٔ دوم م	
ن	سنجش آموزش و پرورش http://aee.medu.ir	مركز	ه سال ۱۳۹۷	سرکشور دی ما	آموزان بزرگسال و داوطلبان آزاد سراه	دانش
نمره			هنمای تصحیح	را		ردیف
١			ب (۰/۲۵) π (۰ ت) مثبت (۰/۲۵) (الف) ۲- (۰/۲۵) (تمرین ۶ صفحه ۲۲ پ) ۱ (۰/۲۵) (تمرین ۶ صفحه ۸۲)	١
1/8	(·/ ۲۵) g	(·/\ta)	$D_g = [-1, 1]$ $R_g = [-1, 1]$		(تمرین ۲ صفحه ۱۲)	۲
١	نمرین ۸ صفحه ۲۲)	(مشابه i			$(-1)^{r} - x^{r} + x^{r} - x + 1$ (٠/۵) (الف) (۱۵) (الف) (۱۵) (ب)	٣
•/ Y ۵		(·/b)			(تمرین ۱ صفحه ۲۱) اکیداً صعودی	۴
٠/۵	(44)	(۰/۲۵) (تمرین ۵ صفحه	ب) درست	(* '	الف) نادرست (۰/۲۵) (نکته صفحه ۷	۵
١		$ = \Upsilon \cdot (\cdot / \Upsilon \Delta) \begin{cases} a - a \\ - a \end{cases}$ (۰/۲۵) $y = \Upsilon S$			(تمرین ۳ صفحه ۳۴) هر یک از سه تابع y = ۳sin(۲x) یا	۶
1/48	(مشابه مثال صفحه ۳۹)	$\cos x = \cos x$	$(\cdot/\tau \Delta) \Rightarrow \begin{cases} \tau x \\ \tau x \end{cases}$	$= Yk\pi + x ($ $= Yk\pi - x ($	$(\cdot/\Upsilon\Delta) \implies x = k\pi (\cdot/\Upsilon\Delta)$ $(\cdot/\Upsilon\Delta) \implies x = \frac{k\pi}{\Upsilon} (\cdot/\Upsilon\Delta)$	٧
1/6	الف $\lim_{x \to \tau^{+}} \frac{1}{\tau - x^{+}} \frac{1}{\tau - x^{+}}$ $\lim_{x \to +\infty} \frac{\pi x^{+}}{-\tau x^{+}} (-1)$	$(\cdot/\Delta) = -\frac{r}{r} (\cdot/\Delta)$			(مثال صفحه ۵۳) (تمرین ۳ صفحه ۶۹)	٨
1/4		$\begin{array}{c} (x) \Rightarrow x = 1 \text{ (./ Y \triangle)} \\ (x) \Rightarrow x = 1 $, , ,		(مشابه سوال ۲ کار در کلاس صفحه ۶۸) ⇒ $y = \circ (\cdot / ۲۵)$ هجانب افقی	9

AzmoonFree.ir

« ادامه پاسخ ها در صفحه دوم »

		باسمه تعالى	1.4.1			
مدّت امتحان: ۱ ۳۰ دقیقه	ساعت شروع: ۱۰ صبح	باضی و فیزیک	رشته: ر	یی درس: حسابان ۲	نصحيح امتحان نهاي	راهنمای
1897/10/08	تاريخ امتحان:		م متوسطه	دوازدهم دورهٔ دوه	پایه	
سنجش آموزش و پرورش http://aee.medu.ir	مركز	دی ماه سال ۱۳۹۷				دانش آه

(الله الله الله الله الله الله الله الل	نمره	راهنمای تصحیح	ردیف
$f'_{*}(Y) = \lim_{x \to Y} \frac{ x - Y - o}{x - Y} = \lim_{x \to Y} \frac{x - Y}{x - Y} = 1 (\cdot/Y\Delta) , f'_{*}(Y) = \lim_{x \to Y} \frac{-(x - Y)}{x - Y} = -1 (\cdot/Y\Delta)$ $(A) in the problem of the $			
(-/Y\Delta) b (\(\psi \) (-/Y\Delta) d (\(\psi \) (-/Y\Delta) (-/Y\	,		1.
۱/۲۵ (fg)'(Y) = $f'(Y)g(Y) + f(Y)g'(Y) = Y\times(-Y) + Y\times Y = Y(\cdot/Y\Delta)$ ($f+g$)'(Y) = $f'(Y)g(Y) + f(Y)g'(Y) = Y(\cdot/Y\Delta)$ ($f+g$)'(Y) = $f'(Y) + g'(Y) = Y(\cdot/Y\Delta)$ ($f+g$)'($f+g$)'($f+g$)'($f+g$)'($f+g$) = $f'(f+g)$ '($f+g$)'(-/٧۵		11
$(f+g)'(Y) = \underbrace{f'(Y) + g'(Y)}_{(\cdot/Y \circ)} = Y \cdot (\cdot/Y \circ)$ $Y = \underbrace{(\cdot/Y \circ)Yx(x^{T} + Yx - \circ) - (x^{Y} + 1)(Yx^{T} + Y)}_{(x^{T} + Yx - \circ)} \cdot (\cdot/Y \circ)$ $(x^{T} + Yx - \circ)' \cdot (x^{T} + Yx - \circ)$ $(x^{T}$	1/40	(کار در کلاس صفحه ۹۵) $(fg)'(T) = f'(T)g(T) + f(T)g'(T) = 1 \times (-T) + T \times T = T(\cdot/T\Delta)$	۱۲
$y' = \frac{-r \times r}{(\cdot / \Delta)} \frac{\cos(-rx + 1)(-\sin(-rx + 1))}{(\cdot / \tau_{\Delta})}$ $y' = \frac{-r \times r}{(\cdot / \tau_{\Delta})} \frac{\cos(-rx + 1)(-\sin(-rx + 1))}{(\cdot / \tau_{\Delta})}$ $m'(t) = \frac{1}{r\sqrt{t}} + rt (\cdot / \Delta) \rightarrow m'(t) = \frac{1 \circ t}{s} (\cdot / \tau_{\Delta})$ $f'(x) = -rx^{r} + a (\cdot / \tau_{\Delta}) \xrightarrow{f'(t) = 0} - r + a = 0 (\cdot / \tau_{\Delta}) \Rightarrow a = r (\cdot / \tau_{\Delta})$ $f(1) = r (\cdot / \tau_{\Delta}) \Rightarrow -1 + r + b = r (\cdot / \tau_{\Delta}) \Rightarrow b = -1 (\cdot / \tau_{\Delta})$ $f'(x) = -rx^{r} + sx (\cdot / \tau_{\Delta}), f''(x) = -sx + s = 0 (\cdot / \tau_{\Delta}) \Rightarrow x = 1 (1rs \text{ acts} \tau \tau_{\Delta}, \tau_{\Delta}$		$(f+g)'(\Upsilon) = \underbrace{f'(\Upsilon) + g'(\Upsilon)}_{(\cdot/\Upsilon\Delta)} = \Upsilon (\cdot/\Upsilon\Delta)$	
۱/۵ $m'(t) = \frac{1}{Y\sqrt{t}} + Yt (\cdot/\Delta) \rightarrow m'(9) = \frac{1 \circ 9}{9} (\cdot/Y\Delta)$ (۱۱۰ عضعه ۱۲۰ این الله تعرین ۲ صفعه ۱۲۰ این الله تعرین ۲ صفحه ۱۲۰ این الله تعرین ۲ صفعه ۱۳ صفع	۲	(الف $y' = \frac{(\cdot/ \tau \Delta) \tau x (x^{\tau} + \tau x - \Delta) - (x^{\tau} + 1)(\tau x^{\tau} + \tau) (\cdot/\Delta)}{(x^{\tau} + \tau x - \Delta)^{\tau} (\cdot/\tau\Delta)}$ (الف $(\tau + \tau x - \Delta)^{\tau} (\cdot/\tau\Delta)$ دمحاسبه تابع مشتق از صفحه ۹۲ تا صفحه ۹۶ تا صفحه $(\tau + \tau x - \Delta)^{\tau} (\cdot/\tau\Delta)$ در $(\tau + \tau x - \Delta)^{\tau} (\cdot/\tau\Delta)$ در $(\tau + \tau x - \Delta)^{\tau} (\cdot/\tau\Delta)$ در $(\tau + \tau x - \Delta)^{\tau} (\cdot/\tau\Delta)$	۱۳
$f'(x) = -\mathbf{f}x^{r} + a \ (\cdot/\Upsilon\Delta) \xrightarrow{f'(1)=\circ} -\mathbf{f} + a = \circ \ (\cdot/\Upsilon\Delta) \Rightarrow a = \mathbf{f} \ (\cdot/\Upsilon\Delta)$ $f(1) = \Upsilon \ (\cdot/\Upsilon\Delta) \Rightarrow -1 + \mathbf{f} + b = \Upsilon \ (\cdot/\Upsilon\Delta) \Rightarrow b = -1 \ (\cdot/\Upsilon\Delta)$ $f'(x) = -\mathbf{f}x^{r} + \varphi x \ (\cdot/\Upsilon\Delta) \ , \ f''(x) = -\varphi x + \varphi = \circ \ (\cdot/\Upsilon\Delta) \Rightarrow x = 1 \ (1\%)$ $x = \nabla x + \varphi x \ (\cdot/\Upsilon\Delta) \ , \ f''(x) = -\varphi x + \varphi = \circ \ (\cdot/\Upsilon\Delta) \Rightarrow x = 1 \ (1\%)$ $x = \nabla x + \varphi x \ (\cdot/\Upsilon\Delta) \ , \ f''(x) = -\varphi x + \varphi = \circ \ (\cdot/\Upsilon\Delta) \Rightarrow x = 1 \ (1\%)$ $x = \nabla x + \varphi x \ (\cdot/\Upsilon\Delta) \ , \ f''(x) = -\varphi x + \varphi = \circ \ (\cdot/\Upsilon\Delta) \Rightarrow x = 1 \ (1\%)$ $x = \nabla x + \varphi x \ (\cdot/\Upsilon\Delta) \ , \ f''(x) = -\varphi x + \varphi = \circ \ (\cdot/\Upsilon\Delta) \Rightarrow x = 1 \ (1\%)$ $x = \nabla x + \varphi x \ (\cdot/\Upsilon\Delta) \ , \ f''(x) = -\varphi x + \varphi = \circ \ (\cdot/\Upsilon\Delta) \Rightarrow x = 1 \ (1\%)$ $x = \nabla x + \varphi x \ (\cdot/\Upsilon\Delta) \ , \ f''(x) = -\varphi x + \varphi = \circ \ (\cdot/\Upsilon\Delta) \Rightarrow x = 1 \ (1\%)$ $x = \nabla x + \varphi x \ (\cdot/\Upsilon\Delta) \ , \ f''(x) = -\varphi x + \varphi = \circ \ (\cdot/\Upsilon\Delta) \Rightarrow x = 1 \ (1\%)$		(·/a) (·/ra)	
$f'(x) = -\mathbf{f} x^{r} + a \ (\cdot/r\Delta) \xrightarrow{f'(t) = \circ} -r + a = \circ \ (\cdot/r\Delta) \Rightarrow a = r \ (\cdot/r\Delta)$ $f(t) = r \ (\cdot/r\Delta) \Rightarrow -l + r + b = r \ (\cdot/r\Delta) \Rightarrow b = -l \ (\cdot/r\Delta)$ $f'(x) = -r x^{r} + r x \ (\cdot/r\Delta) \ , \ f''(x) = -r x + r = \circ \ (\cdot/r\Delta) \Rightarrow x = l \ (l r r r r r r r r$	٠/٧۵	$m'(t) = \frac{1}{Y\sqrt{t}} + Yt \ (\cdot/\Delta) \rightarrow m'(9) = \frac{1 \circ 9}{9} \ (\cdot/Y\Delta)$ (11)	14
1 $f'(x) = -x^{Y} + \varphi x (\cdot/Y\Delta), f''(x) = -\varphi x + \varphi = \circ (\cdot/Y\Delta) \rightarrow x = 1 (1\pi\varphi \text{ solitor } Y)$ $\frac{x}{y''} + \frac{-\infty}{y} + \frac{1}{\varphi} + \frac{1}{\varphi$	1/4	$f'(x) = -fx^r + a \ (\cdot / \Upsilon \Delta) \xrightarrow{f'(\cdot) = \circ} -f + a = \circ \ (\cdot / \Upsilon \Delta) \implies a = f \ (\cdot / \Upsilon \Delta)$	16
$y = 1 (\cdot/\Upsilon\Delta) \qquad y' = \frac{-\Upsilon}{(x-\Upsilon)^{\Upsilon}} (\cdot/\Upsilon\Delta)$ $x \qquad -\infty \qquad \Upsilon \qquad +\infty$ $y = 1 \qquad y = 1$	1	$f'(x) = -x^{7} + x \cdot (\cdot/7\Delta), f''(x) = -x + x = 0 \cdot (\cdot/7\Delta) \rightarrow x = 1 (177 \text{ disc})$ $\frac{x}{y''} + \frac{-\infty}{0} + \frac{1}{0} \cdot \frac{+\infty}{0} = 0 \cdot (\cdot/7\Delta)$ $\frac{x}{y''} + \frac{-\infty}{0} \cdot \frac{1}{0} \cdot \frac{+\infty}{0} = 0 \cdot (\cdot/7\Delta)$	18
$y \mid 1 \leftarrow \infty \mid + \infty$ (11)		$y = 1 (\cdot / \Upsilon \Delta) \qquad y' = \frac{-\Psi}{(x - \Upsilon)^{\Upsilon}} (\cdot / \Upsilon \Delta)$ $x \qquad -\infty \qquad \Upsilon \qquad +\infty$ $y' \qquad - \qquad (\cdot / \Delta)$ $y \qquad 1 \qquad +\infty \qquad (\cdot / \Delta)$ $y \qquad 1 \qquad +\infty \qquad (\cdot / \Delta)$ $y \qquad (1 \text{ FF action } 1 \text{ otherwise})$	17