باسمه تعالى

ساعت شروع: ۱ ۰ صبح		مدت امتحان : ۱۳۰ د	رشته : ریاضی فیزیک	سؤالات امتحان نهایی درس : هندسه ۳
		تاریخ امتحان: 11/	ا نام و نام خانوادگی :	پایه دوازدهم دوره دوم متوسطه
مرکز سنجش آممِزش و پرورش http://aec.medu.ir		ل ۱۳۹۷	سراسرکشور در نوبت دی ماد ساا	دانش آموزان بزرگسال و داوطلبان آزاد ،

نمرد	سؤالات (پاسخ نامه دارد)	رديف
	استفاده از ماشین حساب ساده(دارای چهار عمل اصلی و رادیکال) مجاز است .	
-/6	جاهای خالی را با عبارات مناسب پرکنید.	1
	الف) ماتریس قطری که درایههای روی قطر اصلی آن با هم برابر باشند، ماتریس مینامیم .	
	ب) حاصلضرب ماتریسها خاصیت جابجایی	
۲	درستی یا نادرستی عبارتهای زیر را مشخص کنید.	۲
	الف) مكان هندسي نقاطي كه از دو خط متقاطع 'd , d به يك فاصلهاند. نيمساز زاويه بين آن دو خط ميباشد.	
	ب) صفحهای با مولد سطح مخروط دواری، موازی است و از راس آن عبور نمیکند، فصل مشترک صفحه و سطح	
	مخروطی، یک بیضی است.	
	پ) اگر ماتریس $A = \begin{bmatrix} 1 & 7 & -7 \\ 1 & 0 & -1 \end{bmatrix}$ باشد، مجموع درایههای سطر دوم $A = \begin{bmatrix} 1 & 7 & -7 \\ 1 & 0 & -1 \end{bmatrix}$! i
	$(A+I)^{Y}=I+\mathfrak{P}A$ باشد در این $M^{'}=A$ باشد در این $M^{'}=A$ باشد در این $M^{'}=A$	
1/۲۵	ا کور $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{r \times r}$ به صورت $i = j$ i^{r} $i = j$ تعریف شده باشد،ماتریس $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{r \times r}$ را یه دست آهرید $a_{ij} = \begin{cases} i.j & i > j \\ i^{r} & i = j \end{cases}$	٣
۰/۷۵	اگر A ماتریسی $m imes m$ باشد و $A = A $ حاصل $ A \cdot A $ را بیابید.	۴
1/4	اگرضرب ماتریسهای $A = \begin{bmatrix} x & y \\ y & -1 \end{bmatrix}$ و $A = \begin{bmatrix} x & y \\ y & +1 \end{bmatrix}$ تعویض پذیر باشد حاصل $A = \begin{bmatrix} x & y \\ y & -1 \end{bmatrix}$ را بیابید	۵
1	دستگاه $y=m$ به ازای. چه مقادیر m دارای جواب متحصر به فرد میباشد . $\{(m-r)x+ry=m\}$ به ازای. چه مقادیر $x+(m+1)y=r$	۶
1/4	معادله دایرهای را بنویسید که نقاط $B(-۲,۱), A(\mathfrak{k},-1)$ دو سر قطری از آن باشند .	٧
1	حدود a را طوری به دست آورید که $a=0$ $x^{r}+y^{r}-xx+4$ بتواند معلادله یک دایره باشد.	*
}	«ادامه سوالات در صفحه دوم »	

تعالي	باسمه

ا ساعت شروع: ۱۰ صبح	: ۱۳۰ دقیقه	مدت امتحان	رشته : ریاضی فیزیک	سؤالات امتحان نهایی درس: هندسه ۳
تعداد صفحه: ۲	1847/1./19	تاريخ امتحان	انام و نام خانوادگی :	پایه دوازدهم دوره دوم متوسطه
جُش آموزش و پرورش .http://æe.medu		بال ۱۳۹۷	سراسرکشور در نوبت دی م <i>اه</i> س	دانش آموزان بزرگسال و داوطلبان آزاد ،

	http:///see.medu.ir	
سرد	سؤالات (پاسخ نامه دارد)	بف ا
1/74	$x^{r}+y^{r}-rx=1$ نسبت به هم چه رضعی دارند $x^{r}+y^{r}=1$ نسبت به هم هم دارند	دايره
1/6	بیضی طول قطر بزرگ دو برابر طول قطر کوچک باشد ، اندازه زاویه $F\widehat{B}F'$ چند درجه است B A' F' O F A	۱ اگر در است. است.
1/40	سهمی را بنویسید که $F(1,-1)$ کانون و $S(1,1)$ راس آن باشد، سپس معاد ω خط هادی آن را بنویسید.	ا معادل
1	و $\vec{b}=(r,1,-1)$ و $\vec{b}=\vec{a}$ و $\vec{b}=(r,1,-1)$ باشد، بردار $\vec{b}=\vec{b}$ را به دست آورید.	۱ اگر آ
1/6	باشند آنگاه تصویر قائم $ar{a}$ براهتداد $ar{b}$ + $ar{c}$ را به دست آورید . $ar{a}$ = $(-1,-7,\circ)$, $ar{b}$ = $(7,-4,7)$, $ar{c}$ = $(-1,1)$,	۲) اگر (۴
1	$ec{a}$. $ec{b}$ و $ec{b}$ برهم عمودند اگر و فقط $ec{b}$ ر $ec{a}$. $ec{b}$ و غير سفر $ec{b}$ و غير سفر $ec{b}$	۲ برای
1/0	$ar{a}$ نای $ar{a}$ و $ar{b}$ مقدار $ar{a}$, $ar{a}$ و $ar{b}$, $ar{a}$, $ar{a}$, $ar{b}$ $ar{b}$, $ar{a}$, $ar{b}$ $ar{b}$, $ar{a}$, $ar{b}$ $ar{b}$, $ar{a}$, $ar{a}$, $ar{b}$, $ar{a}$, $ar{a}$	۱ برداره
1	ت متوازی الاضلاعی که توسط بردارهای $\vec{a}=(1,0,1)=\vec{a}$ و $\vec{b}=(0,1,1)=\vec{b}$ تولید می شود را به دست آورید .	۱ مساح
		

 -	·			باسمه تعالى		
فيقه	مدَّت امتحان: ۱۳۰	۱۰ صبح	ساعت شروع: •	رشته: ر یاضی فیزیک	اهنمای تصحیح امتحان نهایی درس: هندسه ۳	
	144/1-/14 :	ريخ امتحان	تار	وسطه	پایه دوازدهم دوره دوم مت	
ئى	سنجش آموزش و پرورث http://aee.medu.ir 	مر کز	ż	رکشور دی ماه سال ۱۳۹۷	انش آموزان بزرگسال و داوطلبان آزاد سراس	
نمره				راهنمای تصحیح	ديف	
٠/۵				ب) ندارد (۰/۲۵)	۱ الف) ماتریس اسکالر (۰/۲۵)	
۲	درست (۰/۵)	ت)د	ست (۰/۵)	ست (۰/۵) پ) ئادرى	۲ الف)درست (۰/۵) ب) نادر	
1/40	$\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 \\ Y & \mathbf{F} & 1 \\ Y & \mathbf{F} & \mathbf{q} \end{bmatrix}$	(·/۵) YA	$\mathbf{A} - \mathbf{Y}\mathbf{I} = \begin{bmatrix} \mathbf{Y} & 0 \\ \mathbf{f} & \mathbf{A} \\ \mathbf{F} & \mathbf{I} \mathbf{Y} \end{bmatrix}$	$\begin{bmatrix} & -7 \\ & 7 \\ & 1 \end{bmatrix} - \begin{bmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & T \end{bmatrix} = \begin{bmatrix} -7 \\ 7 \\ 5 \end{bmatrix}$	(·/Ya)	
-/٧۵	$ A \cdot A = \underbrace{ -YA = (-Y)^{Y} A }_{-/Y\Delta} = \underbrace{-A \times (-Y)}_{-/Y\Delta} = 19 (\cdot / Y\Delta)$					
1/4	$\begin{bmatrix} x & y \\ y & -1 \end{bmatrix} \begin{bmatrix} f & r \\ r & f \end{bmatrix} = \begin{bmatrix} f & r \\ r & f \end{bmatrix} \begin{bmatrix} x & y \\ r & -1 \end{bmatrix} \xrightarrow{\frac{1}{100}} \begin{bmatrix} fx + ry & rx + fy \\ 0 & r \end{bmatrix} = \begin{bmatrix} fx + f & fy - r \\ rx + \lambda & ry - f \end{bmatrix} (\frac{1}{100})$ $Tx + \lambda = 0 \rightarrow x = -1 (\frac{1}{100}) Ty - f = r \rightarrow y = r (\frac{1}{100})$ $\begin{bmatrix} r \\ r $					
•	$m-\Psi$ Ψ $m+1$ $m \in \mathbb{R}-\{\Delta, \cdots\}$			$(m+1)-17\neq \circ \xrightarrow{(\cdot/7\delta)} \rightarrow$	$m \neq \Delta, m \neq -\Upsilon$ (*/Y\Delta)	
1/4	$O(\frac{r-r}{r}, \frac{-1+1}{r})$ $(x-t)^r + y^r =$			$ =\sqrt{\beta^{r}+\mathbf{Y}^{r}}=\mathbf{Y}\sqrt{1}.$	$r = \sqrt{1} (\cdot / \Upsilon \Delta)$	
•	$a^{\dagger} + b^{\dagger} - \epsilon > 0$	-/۲۵ >	¶+Y∆-Fa>	· ○	$\frac{1}{1} \rightarrow a < \frac{1}{Y} (\cdot / Y\Delta)$	
		·		ادامه در صفحه دوه	· · · · · · · · · · · · · · · · · · ·	

		·	باسمه تعالى	*	
قيقه	مدّت امتحان: ۱۳۰	ساعت شروع: ۱۰ صبح	رشته: ریاضی فیزیک	نصحیح امتحان نهایی درس: هندسه ۳	إهنماي
	1847/1-/14 :	تاريح امتحان	متوسطه	پایه دوازدهم دوره دوم ه	
ش	سنجش آموزش و پروره http://aee.medu.ir	مركز	سرکشور دی ماه سال ۱ ۳۹۷	آموزان بزرگسال و داوطلبان آزاد سراه 	دانش
نمره			راهنمای تصحیح		ردیف
1/40	$\underbrace{O(\circ,\circ)}_{\bullet/Y\Delta}$, $\underbrace{O'(1,\circ)}_{\bullet/Y\Delta}$	$\underline{r} = \underline{Y}$, $\underline{r'} = \sqrt{\Delta}$			٩
		$\Rightarrow \underbrace{ \mathbf{r}-\mathbf{r}' = \sqrt{\Delta} - \mathbf{r}}$	$< OO' < r + r' = \sqrt{\Delta} + 7$	دو دایره متقاطع می باشند. ۰/۲۵	
	,		_ · ·	$b^{r} = rb^{r} \xrightarrow{-1/ra} c = \sqrt{r}b + 1/ra$	1•
1/4	A' F' O	1 F / -	$\tan B_1 = \frac{OF}{OB} = \frac{c}{b} = \frac{\sqrt{r}b}{b} = \sqrt{r}$ $F\hat{B}F' = r \times s = r \cdot / r \Delta$	$\xrightarrow{\gamma a} B_{\gamma} = \beta \bullet^{\circ} \xrightarrow{\gamma \uparrow a} B_{\gamma}$	
1/۲۵	$\underbrace{a=\mathfrak{r}}_{./To}$			با توجه به جایگاه راس و کانون این	11
.		$\underbrace{(x-1)^{Y} = -19(y-1)^{2}}_{1/\Delta}$		معادله خط هادی: ۶ = y (۰/۵)	
١	$\overline{a} = (\Upsilon, \Upsilon, -1) -$	$\overrightarrow{rb} - \overrightarrow{a} = \underbrace{Yb - \overrightarrow{a}}_{(\cdot/Ya)}$	$\underbrace{ \left(\underbrace{\mathfrak{S}, Y, -Y) - \left(Y, Y, -I \right)}_{-/Y_{\Delta}} = \left(_{-/Y_{\Delta}} \right) \underbrace{ \left(\underbrace{S, Y, -Y}_{-/Y_{\Delta}} \right) - \left(Y, Y, -I \right)}_{-/Y_{\Delta}} = \left(_{-/Y_{\Delta}} \right) \underbrace{ \left(\underbrace{S, Y, -Y}_{-/Y_{\Delta}} \right) - \left(Y, Y, -I \right)}_{-/Y_{\Delta}} = \left(_{-/Y_{\Delta}} \right) \underbrace{ \left(\underbrace{S, Y, -Y}_{-/Y_{\Delta}} \right) - \left(Y, Y, -I \right)}_{-/Y_{\Delta}} = \left(_{-/Y_{\Delta}} \right) \underbrace{ \left(\underbrace{S, Y, -Y}_{-/Y_{\Delta}} \right) - \left(Y, Y, -I \right)}_{-/Y_{\Delta}} = \left(_{-/Y_{\Delta}} \right) \underbrace{ \left(\underbrace{S, Y, -Y}_{-/Y_{\Delta}} \right) - \left(Y, Y, -I \right)}_{-/Y_{\Delta}} = \left(_{-/Y_{\Delta}} \right) \underbrace{ \left(\underbrace{S, Y, -Y}_{-/Y_{\Delta}} \right) - \left(Y, Y, -I \right)}_{-/Y_{\Delta}} = \left(_{-/Y_{\Delta}} \right) \underbrace{ \left(\underbrace{S, Y, -Y}_{-/Y_{\Delta}} \right) - \left(Y, Y, -Y \right)}_{-/Y_{\Delta}} = \left(\underbrace{S, Y, -Y}_{-/Y_{\Delta}} \right) \underbrace{ \left(\underbrace{S, Y, -Y}_{-/Y_{\Delta}} \right) - \left(Y, Y, -Y \right)}_{-/Y_{\Delta}} = \left(\underbrace{S, Y, -Y}_{-/Y_{\Delta}} \right) \underbrace{ \left(Y, Y, -Y \right)}_{-/Y_{\Delta}} + \left(Y, Y, -Y \right)}_{-/Y_{\Delta}} = \left(\underbrace{Y, Y, -Y}_{-/Y_{\Delta}} \right) \underbrace{ \left(Y, Y, -Y \right)}_{-/Y_{\Delta}} + \left(Y, Y, -Y \right)}_{-/Y_{\Delta}} = \left(Y, Y, -Y \right) \underbrace{ \left(Y, Y, -Y \right)}_{-/Y_{\Delta}} + \left(Y, -Y \right)}_{-/Y$	T,0,-1) (+/TD)	۱۲
1/0	$\vec{b} + \vec{c} = (\Upsilon, -\Upsilon, \mathcal{P})$	$(\cdot/\Upsilon\Delta)$, $\overline{a'} = \frac{\vec{a} \cdot (\vec{b} + \vec{c})}{ (\vec{b} + \vec{c}) }$		$\frac{-\Psi,\mathcal{P})}{(Y,-\Psi,\mathcal{P})} = \underbrace{\frac{1}{V}(Y,-\Psi,\mathcal{P})}_{(\cdot/\Delta)}$	۱۳
١	$\vec{a}.\vec{b} = \circ \Leftrightarrow$	$\underbrace{ \vec{a} \vec{b} \cos\theta = \circ}_{-/\tau_{\Phi}} \leftarrow \underbrace{ \vec{a} \vec{b} \vec{b} \vec{b} }$	$\xrightarrow{ \phi\rangle} \underbrace{\cos\theta = \circ}_{\cdot/\tau_{\Delta}} \Leftrightarrow \underbrace{\theta = \frac{\pi}{\tau}}_{\cdot/\tau_{\Delta}}$		14
1/4	· · · -	_	$\underline{\theta} \Rightarrow \sin \theta = \frac{17}{17} \xrightarrow{/76} \cos \theta$	$=\pm\sqrt{1-\left(\frac{17}{17}\right)^{7}}=\pm\frac{\Delta}{17} \qquad (\cdot/\Upsilon\Delta)$	۱۵
	-/Ya	$\underline{\theta} = \mathbf{r} \times \mathbf{r} \mathbf{p} \times (\pm \frac{\Delta}{\mathbf{r} \mathbf{r}}) = \pm \mathbf{r}$		deriver of the second	
,	$\vec{a} \times \vec{b} = (-1, -1, 1)$	$(\cdot / Y \Delta) \qquad S = \underbrace{ \vec{a} }_{\cdot \cdot}$	$\frac{\times \vec{b}}{\sqrt{r_0}} = \underbrace{\sqrt{1+1+1}}_{-\sqrt{r_0}} = \sqrt{r} \qquad (*)$	/Ya)	18

" مصحح گرا می ، به راه حل های درست و منطبق بر کتاب درسی بارم به تناسب منظور شود"

۲.